Exploring	Linear	Equations
Exhining	Lincur	Equations

y = Mx + B

Part I: Graph each equation and fill out the table below:

y = Mx + B	What is M?	What is B?	Sketch the graph	Where does the graph intersect the y-axis?
$y_1 = 15x + 2$				
$y_2 = 2x - 3$				
$y_3 = \frac{3}{4}x - 2$				
$y_4 = \frac{1}{4}x - 3$				

Name_

Use the graphs above (and look at the graphs on your computer) to answer the following questions:

- 1) What happens to the graph as M gets larger?
- 2) What happens to the graph as M gets smaller?
- 3) What do you think M tells you about the graph? Can you make up a rule (or draw an example) for what M does to a graph?

Part II: Delete the previous graphs and put these four graphs in y1 through y4

y = Mx + B	What is M?	What is B?	Sketch the graph	Where does the graph intersect the y-axis?
$y_1 = 4x - 3$				
$y_2 = -4x - 3$				
$y_3 = 2x + 1$				
$y_4 = -2x + 1$				

Use the graphs above (and look at the graphs on your computer) to answer the following questions:

- 1) What happens to the graph when M is negative? Describe and draw an example.
- 2) What happens to the graph when M is positive? Describe and draw an example.
- 3) What do you think b tells you about the graph?